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Abstract
We propose a toy model with a reversible mode coupling mechanism and
with a trivial Hamiltonian (and hence trivial statics). The model can be
analysed exactly without relying upon uncontrolled approximation such as the
factorization approximation employed in the current mode coupling theory. We
show that the model exhibits a kinetically driven transition from an ergodic
phase to a nonergodic phase. The nonergodic state is the nonequilibrium
stationary solution of the Fokker–Planck equation for the distribution function
of the model.

1. Introduction

A first-principles understanding of the rich dynamic phenomena and the nature of the liquid–
glass transition still remains a challenging aim [1]. As the only existing first-principle theory,
the mode coupling theory (MCT) of supercooled liquids and the glass transition enjoyed
considerable success in describing the dynamics of weakly supercooled regimes of liquids [2]4.
Notwithstanding this surprising success, there are several unresolved issues concerning the
basis of MCT: (a) A crucial ingredient of MCT is the factorization approximation which
replaces the four-body time correlation functions by the product of two-body time correlation
functions. This approximation is completely uncontrolled and its region of validity is a priori
unknown. (b) The idealized MCT predicts a sharp dynamic transition to a nonergodic state
at a certain temperature. But MCT does not provide any information on the nature of this
nonergodic state. (c) The physical picture of the so-called hopping processes in an extended
version of MCT is still lacking.

In recent years, a possible deep connection between the structural glass and a class of spin
glass models has been pointed out [3]. In particular, the Langevin dynamics of the spherical

3 Permanent address: 4-37-9 Takamidai, Higashi-ku, Fukuoka 811-0215, Japan.
4 More recent developments can be found in the collection of papers in Yip S (1995).
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p-spin model can be analysed exactly in the thermodynamic limit due to the mean field nature
of the model (i.e. full connectivity of the spins) [4, 5]. This analysis shows that the dynamic
equation for the spin correlation function in equilibrium for p = 3 has the same form as in
Leutheusser’s schematic mode coupling equation for the density correlator [6]. The sharp
dynamic transition observed in this class of models is driven by the dissipative nonlinearity
in the equation of motion which originates from the nonlinear Hamiltonian [7]. In contrast
to this, the glassy behaviour in the above-mentioned MCT (as well as in our model given
below) is driven by the reversible nonlinearity [8]5 which is dynamically generated and hence
a nontrivial Hamiltonian is unnecessary.

Under these circumstances, we thought it important to develop a toy model with the
following three ingredients:

• reversible mode coupling mechanism
• trivial statics
• mean-field structure so that the model can be exactly solvable.

We have proposed such a toy model in a recent publication [9]. Here we further analyse the
model. The model yields the self-consistent equations for the relevant correlation functions of
the type familiar in the MCTs of supercooled liquid and glass transitions, where the strength
of the hopping processes can be readily tuned. In the sense that the glassy behaviour in this
toy model is induced by the kinetics of the reversible mode coupling mechanism, our model
is similar in spirit to the kinetically constrained models; the theme of the present workshop.

2. The model

Our model is defined by the following Langevin equations for the N -component density
variable ai(t) with i = 1, 2, . . . , N and the M-component velocity variable bα with α =
i, 2, . . . ,M . Here and below we will use Roman indices for the components of a and Greek
indices for those of b.

ȧi = Kiαbα +
ω√
N
Jijαajbα (1)

ḃα = −γ bα − ω2Kjαaj − ω√
N
Jijα(ω

2aiaj − T δij ) + fα (2)

〈fα(t)〉 = 0 〈fα(t)fβ(t ′)〉 = 2γ T δαβδ(t − t ′) (3)

where the summation is implied for repeated indices. Here γ is the decay rate of the velocity
bα and ω gives the j -independent frequency of oscillation of the density aj . The thermal noise
variables fα(t) are independent Gaussian random variables with zero mean and variance 2γ T ,
T being the temperature of the heat bath with which the system has a thermal contact. The
choice of this variance guarantees the proper equilibration of the system. The N × M matrix
Kiα plays an important role in the model and for later purposes we impose the (one-sided)
orthogonality

KiαKiβ = δαβ KiαKjα 	= δij (4)

where the last equation is due to the inequality M < N . For M = N we can impose an
additional condition Kiα = δiα and hence trivially KiαKjα = δij . We also note that Kiα

governs the linearized reversible dynamics of the model with the dynamical matrix Ω given
by �ij ≡ ω2KiαKjα . The reversible nonlinear mode coupling terms are those involving the

5 The distinctive role played by these two types of nonlinearities in the dynamics has been noted [8].
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mode coupling coefficients Jijα which are chosen to be quenched (time-independent) Gaussian
random variables with the following properties:

Jijα
J = 0

JijαJklβ
J = g2

N

[
(δikδjl + δilδjk)δαβ + Kiβ(Kkαδjl + Klαδjk) + Kjβ(Kkαδil + Klαδik)

] (5)

where · · ·J denotes an average over the J values. Note that there is no thermal noise which
acts directly on the density variable in (1). This is because the model is constructed so as to
mimic the dynamics of a fluid. Equation (1) is analogous to the equation of continuity of a
fluid and (2) is like the equation of motion, where the right-hand side is like the force acting
on a fluid element. In constructing this model, we were motivated by the work in [10, 11] in
which random-coupling models involving an infinite component order parameter have been
shown to be exactly analysed by mean-field-type concepts. We will thus eventually take N
and M to infinity with the ratio δ∗ ≡ M/N being kept finite.

One can derive from the Langevin equations (1)–(3) the corresponding Fokker–Planck
equation for the probability distribution function D({a}, {b}, t) for our variable set denoted as
{a}, {b} as follows:

∂tD({a}, {b}, t) = L̂D({a}, {b}, t) (6)

where the Fokker–Planck operator is given by L̂ = L̂0 + L̂1 + L̂MC with

L̂0 ≡ ∂

∂bα
γ

(
T

∂

∂bα
+ bα

)
L̂1 ≡ Kjα

(
− ∂

∂aj
bα +

∂

∂bα
ω2aj

)

L̂MC ≡ 1√
N
Jijα

(
− ∂

∂ai
ωajbα +

∂

∂bα
ω(ω2aiaj − T δij )

)
.

(7)

It is then easy to show that the equilibrium stationary distribution (i.e. L̂De(a, b) = 0) is given
by

De({a}, {b}) = const × exp

(
−

N∑
j=1

ω2

2T
a2
j −

M∑
α=1

1

2T
b2
α

)
(8)

where const is the normalization factor.

3. Analysis and discussion

For the subsequent analysis it is most convenient to introduce the following generating
functional:

Ẑ{ha, ĥa, hb, ĥb} ≡
∫

d{a}
∫

d{b}
∫

d{â}
∫

d{b̂}

× exp

(
i
∫

dt (haj aj + ĥaj âj + hbαbα + ĥbαb̂α)

)
eŜ (9)

where the integrals are functional integrals over the variable sets {a}, {â}, {b}, {b̂} and the h
values and the ĥ values the conjugate source fields. The action Ŝ was decomposed into two
parts Ŝ0 and Ŝ1 which take the form

Ŝ0 =
∫

dt
{
iâi

(
ȧi −Kiαbα

)
+ ib̂α

(
ḃα + γ bα + ω2Kiαai − fα

)}
(t) (10)

Ŝ1 = JjkαX̂jkα (11)

X̂jkα ≡ ω√
N

∫
dt

{ − iâj akbα + ib̂αω
2ajak

}
(t) (12)
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where we have dropped the termT δij coming from (2) since this term is negligible in the limit of
infinite M and N . The functional determinant associated with the Langevin equations (1)–(3)
which should appear in the integrand of the generating functional Ẑ was equated to unity
assuming the Itô calculus [12]6. The various correlation functions and response functions
are obtained by taking various functional derivatives of lnZ{ha, ĥa, hb, ĥb} with respect to h

values and ĥ values and setting them equal to zero in the end in the standard way, where Z is
the generating functional Ẑ, averaged over the f values and the J values.

We now note that the replacements iâj → (ω2/T )aj , b̂α → bα/T in X̂jkα leads to
X̂jkα = 0. Hence we can also rewrite X̂jkα as

X̂jkα = X̃jkα ≡ ω√
N

∫
dt

{ − iãj akbα + iω2b̃αajak
}
(t) (13)

where iãi ≡ iâi + (ω2/T )ai and ibα ≡ ib̂α + bα/T .
We now obtain for this toy model the equilibrium correlation functions defined as

Ca(t − t ′) ≡ 1

N
〈aj (t)aj (t ′)〉 Cab(t − t ′) ≡ 1

M
Kjα〈aj (t)bα(t ′)〉

Cba(t − t ′) ≡ 1

M
Kjα〈bα(t)aj (t ′)〉 Cb(t − t ′) ≡ 1

M
〈bα(t)bα(t ′)〉

CK
a (t − t ′) ≡ 1

M
KiαKjα〈ai(t)aj (t ′)〉.

(14)

It turns out that we need to have the last correlation function to close the self-consistent set of
equations for the correlators when M < N . Note that for the case M = N , if Kiα = δiα is
imposed, then CK

a (t − t ′) = Ca(t − t ′). The corresponding response functions can be defined
as

Ga(t − t ′) ≡ 1

N
〈aj (t)iâj (t ′)〉 Gab(t − t ′) ≡ 1

M
Kjα〈aj (t)ib̂α(t ′)〉

Gba(t − t ′) ≡ 1

M
Kjα〈bα(t)iâj (t ′)〉 Gb(t − t ′) ≡ 1

M
〈bα(t)ib̂α(t ′)〉

GK
a (t − t ′) ≡ 1

M
KiαKjα〈ai(t)iâj (t ′)〉.

(15)

Since we have a Gaussian stationary solution, we get the fluctuation–dissipation relationships
(FDR) of the form [13]

Ga(t − t ′) = −θ(t − t ′)
ω2

T
Ca(t − t ′) Gab(t − t ′) = −θ(t − t ′)

1

T
Cab(t − t ′)

Gba(t − t ′) = −θ(t − t ′)
ω2

T
Cba(t − t ′) Gb(t − t ′) = −θ(t − t ′)

1

T
Cb(t − t ′)

GK
a (t − t ′) = −θ(t − t ′)

ω2

T
CK
a (t − t ′)

(16)

where θ(t) is the unit step function: θ(t) = 1 for t � 0 and 0 otherwise. Note that this form
of the FDR is rather unusual since the FDR usually takes the form G(t) = −θ(t)∂tC(t)/T .

Another useful property arising from causality and the above FDR is the following
property:

〈Â(t)X(t ′)〉 = 〈X(t)Ã(t ′)〉 = 0 for t � t ′ (17)

for A(t) = (a(t), b(t)) and an arbitrary function X(t) = X(a(t), b(t), â(t), b̂(t)).
6 A consequence of using the Itô calculus is that when a response of a(t) or b(t) to the disturbance â(t ′) or b̂(t ′)
occur simultaneously with the time t , the limit t ′ → t must be chosen in such a way that t is always greater than t ′.
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We now take averages of Ẑ over the thermal noise fα and the quenched random coupling
Jijα . In so doing we use the following properties that hold for the Gaussian random variables:

〈
exp

(
− i

∫
dt b̂α(t)fα(t)

)〉
= exp

(
− γ T

∫
dt b̂α(t)

2

)

exp
(
JjkαX̂jkα

)J = exp
(

1
2JjkαJlmβ

J
X̂jkαX̂lmβ

)
.

(18)

Defining the actions S0 and S1 as

eS0 ≡ 〈
eŜ0

〉
eS1 ≡ eŜ1

J

(19)

we obtain

S0 =
∫

dt
{
iâi (ȧi −Kiαbα)(t) + ib̂α(ḃα + γ bα + ω2Kiαai)(t)− γ T b̂2

α(t)
}

=
∫

dt

{
iâi

(
T

ω2
i ˙̃ai − TKiαib̃α

)
(t) + ib̂α

(
T i ˙̃
bα + TKT

αi iãi + γ T ib̂α
)
(t)

}
(20)

where the last line is obtained using property (17). Now we have to deal with the interaction

part S1 = JjkαJlmβ
J
X̂jkαX̂lmβ/2. One can show that in the limit of M,N → ∞ fluctuations

can be neglected so that quantities like aj (t)aj (t ′)/N etc are replaced by Ca(t, t
′), etc. The

interaction part S1 then becomes gaussianized in the limit ofM,N → ∞. The final expression
for S1 is then given by

S1 =
∫

dt

{
iâi (t)

T

ω2
(aa ⊗ iãi (t) + Kiαiâi (t)T (ab ⊗ ib̃α(t)

+Kiαib̂α(t)
T

ω2
(ba ⊗ iãi (t) + ib̂α(t)T (bb ⊗ ib̃α(t)

}
(21)

where ( ⊗ a(t) ≡ ∫ t

−∞ dt ′ ((t − t ′)a(t ′) etc. Here the kernels ( are given by

(aa(t − t ′) ≡ δ∗ g
2ω4

T

(
Ca(t − t ′)Cb(t − t ′) + δ∗Cab(t − t ′)Cba(t − t ′)

)

(ab(t − t ′) ≡ −2δ∗ g
2ω4

T
Ca(t − t ′)Cba(t − t ′)

(ba(t − t ′) ≡ −2δ∗ g
2ω6

T
Ca(t − t ′)Cab(t − t ′)

(bb(t − t ′) ≡ 2g2ω6

T
Ca(t − t ′)2.

(22)

Three kernels (aa , (ab and (ba comes from the nonlinear coupling term in the original
Langevin equation (1), and the kernel (bb arises from the density nonlinearity in (2). We also
note that the correlator CK

a (t, t
′) is not involved in the ( values.

From the effective Gaussian action Seff ≡ S0 +S1 we can readily write down the following
linearized Langevin equations for ai and bα:

ȧi (t) = Kiαbα(t)−(aa ⊗ ai(t)−Kiα(ab ⊗ bα(t) + f a
i (t) (23)

ḃα(t) = −γ bα(t)− ω2Kiαai(t)−Kiα(ba ⊗ ai(t)−(bb ⊗ bα(t) + f b
α (t) (24)
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where f a and f b are the effective thermal noise variables whose correlations are given by

〈f a
i (t)f

a
j (t

′)〉 = T

ω2
[(aa(tt

′) + (aa(t
′t)]δij

〈f a
i (t)f

b
α (t

′)〉 = KiαT

[
(ab(tt

′) +
1

ω2
(ba(t

′t)
]

〈f b
α (t)f

a
i (t

′)〉 = KiαT

[
(ba(tt

′) +
1

ω2
(ab(tt

′)
]

〈f b
α (t)f

b
β (t

′)〉 = (
2γ T δ(t − t ′) + T [(bb(tt

′) + (bb(t
′t)]

)
δαβ.

(25)

Now we are ready to obtain a set of self-consistent equations for the five correlators from
the linearized Langevin equations. By multiplying (23) by ai(0)/N and (24) by Kiαai(0)/M
and averaging over the effective thermal noise, we obtain

Ċa(t) = δ∗Cba(t)−(aa ⊗ Ca(t)− δ∗(ab ⊗ Cba(t) (26)

Ċba(t) = −γCba(t)− ω2CK
a (t)−(ba ⊗ CK

a (t)−(bb ⊗ Cba(t) (27)

where we used the causality requirements 〈f a
i (t)ai(0)〉 = 0 and Kiα〈f b

α (t)ai(0)〉 = 0. Note
that the correlator CK

a (t) appears in the equation for Cba(t). In order to obtain the equation for
CK
a (t), we multiply (23) by KiβKjβaj (0)/N and take a thermal average. Then we obtain

ĊK
a (t) = Cba(t)−(aa ⊗ CK

a (t)−(ab ⊗ Cba(t). (28)

Similarly by multiplying (23) and (24) by Kiβbβ(0)/M and bα(0)/M , respectively, and
performing the thermal average we obtain the following equations: for Cab(t) and Cb(t)

Ċab(t) = Cb(t)−(aa ⊗ Cab(t)−(ab ⊗ Cb(t) (29)

Ċb(t) = −γCb(t)− ω2Cab(t)−(ba ⊗ Cab(t)−(bb ⊗ Cb(t). (30)

The equations (26)–(30) constitute the self-consistent equations for the five correlators Ca(t),
Cba(t), CK

a (t), Cab(t) and Cb(t). This set of equations can be solved numerically with the
initial conditions Ca(0) = CK

a (0) = T/ω2, Cab(0) = Cba(0) = 0, and Cb(0) = T .
For an analytical treatment it is very convenient to work with the equations of the

Laplace transformed correlation functions defined as CL(z) ≡ ∫ ∞
0 dt e−zt C(t). Performing

the Laplace transformation of the self-consistent equations we obtain

zCL
a (z) = T

ω2
+ (1 −(L

ab(z))δ
∗CL

ba(z)−(L
aa(z)C

L
a (z) (31)

zCL
ba(z) = −(γ + (L

bb(z))C
L
ba(z)− (ω2 + (L

ba(z))C
KL
a (z) (32)

zCKL
a (z) = T

ω2
+ (1 −(L

ab(z))C
L
ba(z)−(L

aa(z)C
KL
a (z) (33)

zCL
ab(z) = (1 −(L

ab(z))C
L
b (z)−(L

aa(z)C
L
ab(z) (34)

zCL
b (z) = T − (ω2 + (L

ba(z))C
L
ab(z)− (γ + (L

bb(z))C
L
b (z). (35)

From (31)–(33), we obtain CL
a (z), C

KL
a (z) and CL

ba(z) in terms of the ( values as follows:

CL
a (z) = T

ω2

1

z + (L
aa(z)

[
1 − δ∗ ω2(1 −(L

ab(z))
2

(z + (L
aa(z))(z + γ + (bb(z)) + ω2(1 −(L

ab(z))
2

]
(36)

CKL
a (z) = T

ω2

[
z + (L

aa(z) +
ω2(1 −(L

ab(z))
2

z + γ + (bb(z)

]−1

(37)

CL
ba(z) = − T (1 −(L

ab(z))

(z + (L
aa(z))(z + γ + (bb(z)) + ω2(1 −(L

ab(z))
2
. (38)
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Here we have used the following symmetry relation:

(L
ba(z) = −ω2(L

ab(z) (39)

which follows from the definition (22) of the kernels (ab and (ba and Cab(t) ≡
Kiα〈ai(t)bα(0)〉 = Kiα〈ai(0)bα(−t)〉 = −Kiα〈bα(t)ai(0)〉 = −Cba(t). The first equality
is due to the time-translation invariance and the second one due to the time-reversal property
of the velocity components. Note that for δ∗ = 1 the two correlatorsCL

a (z) andCKL
a (z) become

identical.
Similarly, from (34) and (35), we obtain

CL
ab(z) = T (1 −(L

ab(z))

(z + (L
aa(z))(z + γ + (bb(z)) + ω2(1 −(L

ab(z))
2

(40)

CL
b (z) = T (z + (L

aa(z))

(z + (L
aa(z))(z + γ + (bb(z)) + ω2(1 −(L

ab(z))
2
. (41)

Now let us look at the behaviour of the correlators for different values of δ∗. For δ∗ = 0
the only nonvanishing kernel is (L

bb(z). Hence we obtain

CL
a (z) = T

ω2

1

z
(L
bb(z) = 2g2ω2T

z
(42)

CKL
a (z) = T

ω2

1

z

[
1 − ω2

z(z + γ ) + (1 + 2g2T )ω2

]
(43)

CL
b (z) = zT

z(z + γ ) + (1 + 2g2T )ω2
(44)

CL
ab(z) = −CL

ba(z) = T

z(z + γ ) + (1 + 2g2T )ω2
. (45)

Here we point out that there appears to be a subtlety associated with the two limiting procedures:
(A) first take δ∗ = M/N = 0 before any calculation, (B) first calculate with δ∗ > 0 and
then take the limit δ∗ → 0+. The procedure (A) gives both Ca(t) = Ca(0) = T/ω2 and
CK
a (t) = CK

a (0) = T/ω2. This is simply due to the fact that the {a} variables are time
independent since there is no velocity variable {b} that drives the dynamics of {a}. However,
the results (42)–(45) were obtained by adopting the second limiting procedure (B). HereCa(t) is
trivially nonergodic: Ca(t) = Ca(0) = T/ω2 whereas CK

a (t) exhibits a nontrivial nonergodic
behaviour: CK

a (t → ∞) = (T /ω2)2g2T/(1 + 2g2T ). The difference between these two
procedures can be seen also by looking at (33) for CKL

a (z). The terms except the first one
on the right-hand side are absent if the first limiting procedure (A) is adopted, whereas they
remain finite in the second limiting procedure (B).

For δ∗ = 1 where M = N and Kiα = δiα , CL
a (z) = CKL

a (z) reproduces the equation de-
rived in [14], apart from the wavenumber dependence. Note that if we put(L

aa(z) = (L
ab(z) = 0

by hand, (36) or (37) gives a closed equation for Ca(t) alone. This equation is nothing but
Leutheusser’s schematic MC equation giving a dynamic transition from an ergodic phase to
a nonergodic one. But in reality (aa and (ab cannot be ignored and our numerical solution
strongly indicates that the system remains ergodic for all temperatures due to the strong con-
tribution of these so-called hopping terms. Furthermore these hopping terms do not become
self-consistently small as temperature is lowered. Therefore the density correlator does not
show a continuous slowing down as the temperature decreases. This result was striking to us
since usually a mean-field-type theory, such as the dynamics of the spherical p-spin model in
the limit of N → ∞, gives a sharp dynamic transition. In fact, we first constructed the toy
model with M = N and expected that a model designed to rigorously reproduce the idealized
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Figure 1. The relaxation of the normalized density correlator Ca(t)/Ca(0) for δ∗ = 0.3.
The other parameters are given by g = γ = ω = 1. The curves are, from left to right,
T = 5, 2, 1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, and 0.001.

MCT should exhibit such a dynamic transition. But to our surprise the dynamic transition
was absent in the N -component toy model. This aspect is a fundamental difference in the two
kinds of mean-field-type theories with and without reversible mode coupling. The foremost
example of the latter is the spherical p-spin model where the ergodic-to-nonergodic transition
is driven by the dissipative nonlinearity which comes from the nonlinear random Hamiltonian.
As demonstrated below, in order to have such a sharp transition in our toy model, we found it
necessary to extend the originalN -component model to the model withM < N . Thus it is very
difficult to understand the idealized MCT without relying upon uncontrolled approximation. It
is also interesting to note that the ergodicity restoring process in our toy model (represented by
the kernels (aa and (ab) has nothing to do with a thermally activated energy barrier crossing
since the Gaussian Hamiltonian in our model does not possess such a barrier.

Our numerical solution for δ∗ = 0.3 is shown in figure 1 for various values of T . The
other parameters were fixed as ω = 1, γ = 1 and g = 1. As T is lowered, the relaxation
exhibits a continuous slowing and it appears to be frozen at the lowest T . One may ask whether
this freezing reflects the presence of the genuine nonergodicity or is merely apparent, in the
sense that a decay of the correlation function will be observed if the observation time window
is further extended. The question of the existence of nonergodicity is easily answered in the
usual idealized MCT where one can solve the closed equation for the nonergodicity parameter
to obtain the phase diagram. The situation is very different in our toy model. When we expand
the correlators as CL

a (z) = fa/z + f (0)
a + f (1)z + · · · etc, we end up with a hierarchically

connected set of equations for all the f values, which cannot be easily analysed numerically.
An analytic feature signifying the presence of a genuine nonergodic state can be seen

by adiabatically eliminating the velocity components in the limit of large γ and obtaining
the Fokker–Planck equation for the distribution function D̃({a}, t) containing only the {a}
variables as follows:
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∂D̃({a}, t)
∂t

= ∂

∂ai

[
Qij ({a})

(
∂

∂aj
+
ω2

T
aj

)
D̃({a}, t)

]
. (46)

Here the diffusion matrix Qij ({a}) is given by

Qij ({a}) ≡ T

γ
MiαMjα

Miα ≡ Kiα +
ω√
N
Jikαak.

(47)

An important point is that the diffusion matrixQij is singular forM < N , i.e. det|Q| = 0 [15].
The proof is simple. Define an N × N matrix M by Mij ≡ Mi,j=α for j � M , Mij ≡ 0
for j > M . Then we obtain in matrix notation Q = (T /γ )M · MT (The superscript T
denotes the transposed matrix.) Then det|Q| = (T /γ )N(det |M |)2 = 0 since det|M | = 0 by
construction. This implies that the Fokker–Planck equation (46) can have a nonequilibrium
stationary solution other than the equilibrium one, D̃e({a}) = const × exp(−ω2a2

j /2T ).
This nonequilibrium stationary solutions are precisely the kind of nonergodic states found
numerically in the present toy model. The general stationary solution [16] is given by

D̃L({a}) = F(ξjaj ) exp

(
− ω2

2T
a2
i

)
(48)

where ξi is the eigenvector of the diffusion matrix Qij with zero eigenvalue. If the function
F(x) is a constant, then D̃L({a}) = D̃e({a}) is the equilibrium distribution, otherwise it is a
nonequilibrium stationary distribution.

One instructive case for the nonequilibrium stationary solutions is that of g = 0. For
this case, Qij becomes proportional to the dynamic matrix �ij : Qij = (T /γ )KiαKjα =
(T /γω2)�ij . By the same argument as above �ij is also singular. Note from (36) that
CL
a (z) = (T /ω2)(1 − δ∗)/z in the limit of z → 0. The other correlators do not diverge at

z = 0. Hence the model is nonergodic for 0 � δ∗ < 1: the system is always driven into the
nonergodic state in the linear case (g = 0). In this case the thermal noise alone is not enough
to drive the system to the equilibrium state. This case is somewhat reminiscent of the ideal gas
case or a collection of independent harmonic oscillators, which are trivially nonergodic due
to the absence of interactions. Only when the nonlinear reversible mode coupling is present
can the thermal noise drive the system to the equilibrium state as T increases, thus making
the system ergodic. The onset temperature at which ergodicity is recovered is the dynamic
transition temperature.

In any event, further numerical and theoretical studies of possible ergodic-to-nonergodic
transitions for the nontrivial case g 	= 0 are warranted.

4. Summary

We have constructed a dynamic mean-field-type model involving N -component density and
M-component velocity variables with reversible mode coupling and trivial Hamiltonian. The
model is exactly solvable in the limit of N,M → ∞ while keeping the ratio δ∗ ≡ M/N

finite. The model exhibits a sharp dynamic transition to a nonergodic state only in the
range 0 � δ∗ < 1. The nature of the nonergodic state can be understood in terms of
the nonequilibrium stationary solution of the Fokker–Planck equation for the probability
distribution for the density variable. It would be interesting to investigate the nonequilibrium
ageing behaviour of the model.
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